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EDGE. PARTITIONS OF THE 
COMPLETE SYMMETRIC DIRECTED GRAPH 

AND RELATED DESIGNS* 

BY 

BRIAN ALSPACH,* KATHERINE HEINRICH AND MOSHE ROSENFELD 

ABSTRACTI" 

We show that the edges of the complete symmetric directed graph on n vertices 
can be partitioned into directed cycles (or anti-directed cycles) of length n - 1 so 
that any two distinct cycles have exactly one oppositely directed edge in 
common when n = p" > 3, where p is a prime and e is a positive integer. When 
the cycles are anti-directed p must be odd. We then consider the designs which 
arise from these partitions and investigate their construction. 

w Introduction 

The problem of partitioning the edges of the complete symmetric directed 
graph DK. on n vertices into isomorphic copies of a certain specified subgraph 
has been considered by many authors. We shall first consider the problem of 

partitioning the edges of DKn into directed cycles of length n -  1 with the 

property P that any two distinct cycles have exactly one oppositely directed edge 

in common. We then consider the problem of partitioning the edges of DKn into 

anti-directed cycles of length n - 1 with property P. This second partition gives 

rise to a new design which we call an A-design. Not all A-designs arise in this 

way and their existence will be further investigated in Section 3. 

w Directed graphs 

We shall denote by DK~ the complete symmetric directed graph on n vertices; 

by DC. the directed cycle of length n; and by AC. the anti-directed cycle of 
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length n. When we refer to the edge uv we mean the directed edge from u to v. 

Hence we shall write D:(dl,  d 2 , " ' , d k )  for the directed cycle of length k 

consisting of the edges dl d2, d2d3 , ' . . ,  dk-i dE, dkdl and A :(a~, a 2 , "  ", a2k) for 

the anti-directed cycle of length 2k (clearly an anti-directed cycle must have 

even length) consisting of the edges a~ a2, a3 a2, a3 a4, a5 a4, �9 �9 �9 a2k-I a2k, al a2k. 

For other graph theoretic terms the reader is referred to Bondy and Murty [3]. 

The problem of partitioning the edges of DK.  into copies of DC,_~ has been 

solved by Bermond and Faber [1] who showed that such a partition exists for all 

n --_> 4. Hering and Rosenfeld [9] have since asked if it is possible to partition the 

edges of DK,, into copies of DC._~ with the property that if D~ and D2 are any 

two distinct cycles in the partition, then there is exactly one edge uv of DK.  so 

that uv is an edge of D~ and vu is an edge of D2. This property will be referred to 

as property P and we shall write DK.  ~ DC,,_~ if such an edge partition with 

property P exists. The partitions given by Bermond and Faber do not have 

property P. It will be shown that DK.  --~ DC,,-I when n = p" > 3, where p is a 

prime and e is a positive integer. 

Rosenfeld then went on to ask if the edges of DK,,, n odd, could be partitioned 

into copies of AC,,-t with property P. Writing DK,, ~ AC.-1 if such a partition 

exists, we shall show that DK.  ~ AC.-~ when n = pe > 3, where p is an odd 

prime and e is a positive integer. 

Labelling the vertices of DKs by 1, 2, 3, 4, 5 we see that D K s - o  DC4 as given 

by the cycles D1 : (2, 4, 5, 3), D2 : (1, 4, 3, 5), D3 : (1, 2, 5, 4), D4 : (1, 5, 2, 3) and 

Ds:(1 ,3 ,4 ,2)  and that DKs---~AC4 as given by the cycles A1: (2, 3, 5, 4), 

A2:(1,3,4,5),  A3:(4,1,5,2) ,  A4:(2,1,3,5),  and As:(1,2 ,3 ,4) .  

THEOREM 2.1. When n = p" > 3, where p is a prime and e is a positive integer, 

then DK,  ~ DC.-I .  

PROOF. Label the vertices of DK.  with the elements of GF (n) where GF(n)  

denotes the Galois field with n = p" elements. Let b be a generator of the 

multiplicative cyclic group of GF (n). 
Consider the cycle Do: (1, b, b2, .. ., b"-2) where b"-I = 1. Define further n - 1 

cycles by D k : ( l + b k ,  b + b k ,  b 2 + b k , " ' , b  n-2+bk) for k = l , 2 , . . . , n - 1 .  It is 

clear that each of the cycles Dk, k = 0 ,1 , . . . ,  n - 1, has length n - 1. If an edge 

occurred in more than one cycle, we would have either 

b i = b  j + b  k and b ~§ j§  k, l _ -<k<=n-1 ,  

o r  

b ~ + b k = b i + b ~' and b i+1 + b k = b j§ + b k', 1 < k < k'  <_ n - 1, 
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for some i and j. Both are impossible given that b is not 0 or t and i # j. Thus 

every edge occurs in at most one cycle and since the n cycles account for 

n(n  - 1) edges, then every edge of DKn occurs in exactly one of the cycles so 

that Do, Dr , - - - ,  D,_t partition the edges of DKn. 

We must now show that this partition of the edges of D K .  has property P. 

Consider the system S of equations 

bx - y = a, x - b y  = a 

in GF (n) where b is as before and a an element of GF (n). Since 1 - b z # 0, then 

S has a unique solution (x,y)  with x and y in GF(n) .  

Let us now suppose that the cycles Do and D~, 1 =< k _-< n -  1, have two 

oppositely directed edges in common. That is, there are two edges b~b ~*~ and 
bib  j§ in Do, i #  ], and two edges (b"+  bk)(b ''+l + b E) and ( b r +  bk ) (b  r+~ + b E) in 

Dk, i'  # j ' ,  so that 

b e = b r + t + b  k, b ~ + l = b i ' + b  ~, b s = b r + l + b  k and b S + t = b r + b  k. 

From these we have two systems of equations 

and 

bb i - b r =  b k, bb i - b r =  b k, 

b i _ bb r = b E ' b j - b b  r = b k, 

denoted S~ and $2, respectively. Clearly $1 has unique solution (b e, b r) where 

i - i '  = (n - 1)]2 and $2 has unique solution (b s, b r) where j - i '  = (n - 1)]2. But 

S~ and $2 both represent S and hence b ~ = b j and b r =  b r, whence i = j  and 

i' -- j ' ,  a contradiction. 

By the same argument we can show that the cycles Dk and Dk,, 1 _--< k < k '  _-< 

n - 1, have at most one oppositely directed edge in common. Consequently, any 

two cycles have at most one oppositely directed edge in common and since every 

cycle has n -  1 edges it must have exactly one oppositely directed edge in 

common with each other cycle. Thus the edge partition has property P. [] 

It is also known that DK~2---> D C ,  and DK~s---~ DCt4. These will be dealt with 

in Section 2. 

If we let 2Kn denote the complete multigraph on n vertices in which each edge 

has multiplicity two, let Cn denote the undirected cycle of length n and write 

U : ( u ~ , u 2 , . . . , u , )  for the cycle consisting of the undirected edges 

u~ u2, u 2 u 3 , ' " ,  u._t un, unut and let 2Kn---* Cn-i mean that we can partition the 
edges of 2Kn into cycles of length n - 1 in which every pair of distinct cycles have 
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exactly one edge in common, then from Theorem 2.1 we obtain the following 

corollary. 

COROLLARY 2.2. When n = pe > 3, where p is a prime and e is a positive 

integer, then 2K, ~ C,_,. 

PROOF. The proof follows immediately from Theorem 2.1. Simply take the 

construction there and replace each of the n ( n -  1) directed edges by an 

undirected edge. []  

It can also be shown that 2K6---~ (75, 2K,0---* (?9, 2K14-"* Cl3, 2K12---~ C,I and 

2K,5--* C~4. The latter two follow from the comment after Theorem 2.1 and 

Corollary 2.2 while the first three are given below. None of the three can be 

oriented to give DK.  ~ DCn-,. The fact that 2K6---~ (?5 is of particular interest 

since DK6---~DC5 is impossible as we shall see in Section 3. 

Labelling the vertices of 2/(, by 1, 2 , . . . ,  n we see that 2K6---~ (?5 as given by 

the cycles U~:(2,3,6,4,5) ,  U2:(1,3 ,4 ,5 ,6) ,  U3:(1,2 ,4 ,6 ,5) ,  U4:(1 ,5 ,3 ,2 ,6) ,  

U5:(1 ,2 ,6 ,3 ,4)  and U6:(1,3 ,5 ,2 ,4) .  We see that 2K,0---~ C9 as given by the 

cycles U, : (2, 7, 4, 3, 8, 6, 5, 9, 10), /./6 : (2, 8, 7, 10, 3, 1, 4, 5, 9), U~,~ and Uo,~6~, 1 <= 

i _-< 4, where tr is the permutation (1 2 3 4 5) (6 7 8 9 10) and Uo,tk~ is obtained' by 

applying the permutation tr ~ to the vertices in Uk, k = 1 or 6. Finally we see that 

2K14"-'~Ct3 as given by the cycles U, : (4 ,11 ,9 ,12 ,5 ,7 ,6 ,14 ,13 ,3 ,8 ,2 ,10) ,  

/-/8 : (3, 12, 2, 7, 6, 11, 10, 13, 4, 1, 5, 9, 14), U,,,o~ and U,,,ts~, 1 _-< i =< 6, where cr is the 

permutation (1 2 3 4 5 6 7)(8 9 10 11 12 13 14) and U,,,tk~ is obtained by applying tr' 

to the vertices of tiE, k = 1 or 8. 

The next two theorems deal with the problem of partitioning the edges of DKn 

into anti-directed cycles with property P. 

THEOREM 2.3. When n = pC, where p is a prime, e is a positive integer and 

n -- 1 (modulo 4), then DKn ~ AC,_, .  

PROOF. As before label the elements of DK,  with the elements of GF(n) .  

Let b be a generator of the multiplicative cyclic group of GF (n) and consider the 

anti-directed cycle Ao : (1, b, b2, . . .  , b "-2) where b ' - '  = 1. We now define 

another n - 1 anti-directed cycles by Ak : (1 + b k, b + bk, . .  ., b ' - 2 +  b k) for 

k = 1 , 2 , . . . , n - 1 .  

If we now show that no edge occurs in two cycles, then by a simple counting 

argument it follows that we have a partition of the edges of DK,  into 

anti-directed cycles of length n - 1 .  Suppose some edge occurs in two cycles. 

First, let one of the cycles be Ao and the other Ak, 1 _----- k _-< n - 1. The edge then 

is either represented as b2~b zj-' and (b 2~ + bk)(b2J-~ + bk), or as b2~b ~H and 
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(b  2i + bk)(b 2j+' + b k) where  i and j are distinct and 1 =< i, j _-< (n - 1)/2. In the 

first case we have  b2'-~(b - 1) = b2J-~(b - 1), and since b is not  0 or  1 and 1 =< i, 

j =< (n - 1 ) / 2 ,  then  we must  have  i = j which is a contradict ion.  In  the second 

case we have  b 2 H ( b  - 1) = b2S(1 - b)  and since b is not  0 or  1 and b ~-~)/2 ~ - 1, 

then  2 i -  1-= 2j + ( n -  1)/2 (modulo  n -  1). But  since n = 1 (modulo  4), then  

(n - 1 ) / 2  = 0 (modulo  2) and so 2 i -  1 ~ 2j + (n - 1 ) / 2  (modulo  n - 1 )  and the  

des i red  equal i ty  can neve r  hold. T h e  case when  the  two cycles are A k  and Ak,, 

1 _--< k < k '  =< (n - 1)/2, is dealt  with in the same  way. 

It  r emains  now to show that  the  par t i t ion  has p rope r ty  P. T o  do this it suffices 

to show that  any two distinct cycles have  at least one  oppos i te ly  d i rec ted  edge  in 

c o m m o n .  

First we wri te  A k* to deno t e  the  cycle Ak in which the o r ien ta t ion  on each 

edge  is reversed.  Again ,  consider  the  sys tem S of equat ions  

bx - y = a, x - b y  = a 

in G F ( n )  where  b is as def ined earl ier  and  a is an e l emen t  of  G F ( n ) .  Since 

b 2 - 1 ~ 0 ,  then  S has a unique solut ion ( x , y )  where  x and y are in G F ( n ) .  

Put t ing x = b '  and y = b ' ,  and subst i tut ing in S yields 

b '+'  - b" = a, b '  - b T M  = a 

implying b '  = - b '  and hence  r - s + (n - 1)/2 (modulo  n - 1).  Since n - 1 

(modulo  4) then  r and s have  the  same  pari ty.  

In  the  case when  both- r and  s are odd,  let b" = b 2~-~ and b ~ = b 2j-1 and  let 

a = b k. T h e n  we have  

implying that  

b 2i _ b2S-1 = b E, b2i-1 _ b2J = b k 

b 2i = b2J-~ + b k, b 2~-~ = b2S + b ~. 

So ident ifying vert ices  in the cycles A0 and A * m e a n s  that  the  edge  b2~b 2H in 

Ao is the  s ame  as the  edge  (b  2s-1 + b k ) ( b  zs + b E) in A *. Let t ing  a = b k - b k' and  

using the  above  a r g u m e n t  shows that  A * and  AE, have  an edge  in c o m m o n .  

Now,  in the  case when  bo th  r and s are  even,  let b '  = b 2i and b '  = b 2j. T h e  

desi red result  follows in the s ame  way as when  bo th  r and  s are  odd.  [ ]  

TFIEOm~M 2.4. W h e n  n = p" > 3, where  p is a pr ime,  e is a posi t ive  integer a n d  

n - 3 (modulo  4), then  D K ,  ---> A C , _ I .  

PROOF. Labe l  the  vert ices of  D K n  with the  e lements  of  G F ( n ) .  Le t  b be  a 
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generator of the multiplicative cyclic group of non-zero elements of GF(n) .  Then 

b 2 generates the quadratic residues, denoted Q ( n ) .  For each m =  

1, 2 , . . . ,  (n - 1)/2 we claim that the sequence of vertices 
1, b 2"+3, b z, b 2m+5, b 4, b 2"+7, ' '  ", b "-3, b am+" are all distinct. This follows since the 

entries in the odd indexed coordinates are just the elements from Q ( n )  while the 

remaining entries are b 2"+3. Q ( n )  and since b 2~§ is a quadratic non-residue 

these are all the non-zero quadratic non-residues of G F (n ) .  

For some m E {1, 2, .  �9  (n - 1)/2} we claim that (b 2"+3- 1)/(b 2"§ - 1) is not a 

quadratic residue. If 

b 2m+3-1 b 2j+3-1 

b 2"+' - 1 = b 2j+' - 1' 

then b2J+'(b2 - 1) = b2"+l(b 2 - 1) which implies b 2j+3 = b 2ra+3. Thus the elements 

(b 2m§ 1)/(b 2m§ - 1) are all distinct for m = 1, 2 , - - . ,  (n - 1)/2. Since none of 

them equals 1, since they are all distinct and since the number of quadratic 

residues equals (n - 1)/2, the claim is seen to be true. 

Let m E { 1 , 2 , . . - , ( m -  1)/2} be such that (b 2"§ 1)/(b 2m§ 1) is not a 

quadratic residue in GF (n). Consider the anti-directed cycle 
A0 : (1, b 2m§ b 2, b 2"§ b4, . . .  , b "-1, b 2re§ and, as in Theorem 2.3, define 

another n - 1 anti-directed cycles AE : (1 + b k, b 2"§ + b k, b 2 + b k, b 2m§ + 

bk, . . . , b " - ~ + b k , b  z '§ + b  k) for l_-<k _-<n-1.  We shall now prove that the 

anti-directed cycles Ao, A ~ , "  . , a n - i  partition the edges of D K .  and have 

property P. If the same edge of D K ,  is in two distinct cycles, say Ak and Ak,, 

then we have one of the following: 
(i) bk + b Z ' = b k ' + b  z" and bk + b 2 " + z ' + l = b k ' + b  z"+2.+1, 

(ii) b k - ] - b  2 '  = b k ' + b  2" and b E + b  2m+2 '+1  = bk'+b 2''+2s+3, 
(iii) b k + b  2' = b k ' + b  2" and b k + b  2"§ b k ' + b  2"+2"+3. 

Subtracting the two equations in each of (i) and (iii) leads to b 2"= b 2" 

which is impossible because k #  k'.  Subtracting the equations in (ii) leads to 

b2"(b 2"+1- 1) = b2"(b 2"+3- 1) or b2"/b 2" = (b 2"+3- 1)/(b 2"§ - 1). The left hand 

side of this equation is a quadratic residue but m was chosen so that the right 

hand side is not a quadratic residue. Hence,  (ii) cannot happen and we see that 

the anti-directed cycles partition D K . .  

It now suffices to prove that any two of the cycles intersect in two oppositely 

directed edges. First we remark that 

b 2~"-3v2§ 1 b - 1 b (b  - 1) _ 

_ = b . _ - - ~ _  1 = - b  b ~"-3v2+1 1 1 - b  - 
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is a quadratic residue because b ~  Q ( n ) .  Thus, 2m + 3 ~  1 so that 2m + 3 E  

{3, 5 , - . - ,  n - 2} which means that b zm§ b zm§ ~ 1. Thus, the system S of linear 

equations 
X --  b 2"+1 y = a ,  bZ"+3x - y = a 

has a unique solution (x, y) where x and y are in G F ( n ) .  If a ~ O ,  both x and y 

are non-zero. In this case let x = b '  and y = b e. Substitution in S yields 

br(1 - b 2m§ = bS(b 2'~§ - 1) which implies that r -- s (modulo 2). 

We now consider the cycles Ak and AE,, k ~  k '  and both non-zero, and 

consider the case that r and s are both even. Substitute b 2' = x and b 2j = y in S 

with a = b k - b k' to obtain 

b2i _ b2,-+2J +1 = b ~ - b ~', b 2m+3+2i _ b2J  --_ b k - b k'. 

This yields b k ' +  b 2i = b E + b 2m+2i+1 and b k ' +  b 2m+2i+3 : b k + b 2i o r  

( b k ' +  b 2 ' ) ( b k ' +  b 2"+2'+3) = (b k + b2m+2j+~)(b k + b2J). The  first is an edge of Ak,  

and the second is an edge of A *. In the case that both r and s are odd, a similar 

result is obtained by noticing that if (x, y)  is a solution of S with a = b ~ - b k', 

then ( - x, - y)  is a solution of S with a = b k ' -  b k. Now - x = b 2~ and - y = b 2j 

so that we again obtain that AE and A *, intersect in an edge. 

Finally, if either k = 0 or k ' =  0, then a similar intersection result is easy to 

obtain. [ ]  

In a preliminary draft of this paper,  the proof  of Theorem 2.4 used a 

construction which needed a generator  b of the multiplicative group of nonzero 

elements  of G F ( n )  such that - ( b 2 +  b + 1) is a quadratic residue of GF(n ) .  

W. Vel6z was asked about  the existence of such an element  in G F ( n )  and this 

eventually led to more  general work with D. Madden [13]. Unfortunately,  their 

results do not work for fields of characteristic 3 and so the above alternate 

construction was found. 

w Designs 

Many authors have studied the relationship between combinatorial  designs 

and certain edge partitions of graphs. The reader  is referred to Bermond  and 

Sotteau [2], D6nes and Keedwell [5, chapter  9], Harary  and Wallis [6], Hell and 

Rosa [8], Kotzig [11] and in particular Keedwell [10], although there are many 

more  papers on the subject. We shall further study this relationship. 

A latin square of order  n is an n x n array with the proper ty  that each of the 

elements  1 , 2 , . . - ,  n occurs exactly once in each row and column of the array. 

We write the latin square A as A = (a~j) where aij denotes the element  in the i th 
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row and j th  column. Two latin squares A = (a,j) and B = (bii) of order  n are 

orthogonal if when superimposed, the ordered pairs (a~, b~j) constitute all n 2 

ordered pairs from the set {1, 2 , . . . ,  n }. A latin square A is self-orthogonal if it is 

orthogonal to its transpose A T. For further definitions the reader is referred 

to [5]. 

THEOREM 3.1. If DK, -*DC,_ , ,  then there exists a self-orthogonal latin 

square of order n. 

PROOF. Label the vertices of DK, with the elements 1, 2 , . . . ,  n. Since each 

vertex of DK, is contained in exactly n -  1 of the n directed cycles in the 

partition, there is exactly one cycle which does not contain that vertex. Label all 

edges in this cycle with the same label as this vertex. 

Construct an order  n array A = (a~j) as follows. Put a, = i for all i and a~j = k, 

i ~ j ,  if and only if k is the label on the edge ij. We claim that A is a 

seif-orthogonal latin square. 

Consider the ith row of A. Since the vertex labelled i occurs exactly once in 

each cycle except the one with edges labelled i, then the edges ij, j = 
1 , 2 , . . . , i - l , i + 1 , . . . , n ,  are labelled 1 , 2 , . . . , i - l , i + 1 , . . . , n  in some 

order. Consequently, each row of A contains the elements 1, 2 , . . . ,  n. The same 

argument can be applied to the columns and hence A is a latin square. 

Let k ~  k '  with 1 _-< k, k ' _  -< n. We know there exists an edge i] of DK. such 

that the cycle whose edges are labelled with k contains i /and the cycle whose 

edges are labelled with k '  contains ji. Hence, the ordered pair (k, k ')  occurs 

when A T and A are superimposed. The ordered pair (k, k) occurs in the k th  row 

and k th column when A T and A are superimposed. Hence A is a self- 

orthogonal latin square. []  

Since it is now a well known fact that there exists a self-orthogonal latin square 

of every order n, n ~ 2, 3, 6 (Brayton, Coppersmith and Hoffman [4]), the result 

of Theorem 3.1 serves only to illustrate the relationship between edge partitions 

of graphs and designs. It is not difficult to see that the converse of Theorem 3.1 is 

not true although the latin squares of orders 12 and 15 given by Brayton, 

Coppersmith and Hotiman do in fact give rise to edge partitions showing that 

DKt2"-~ DC,  and DK~5--~ DCz4. 
A more interesting design arises when we look at DK.  --* AC,_~. In this case 

an order n array A = (a~j) is constructed by first labelling the vertices and cycles 

of DK.  as was done in Theorem 3.1 and then putting a,, = i for all i and a,j = k, 

i ~  j, if and only if the edge ij is labelled k. This array A, which we shall call an 

A-design of order n where n is odd, has the following properties. 
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~1) The array contains only the elements 1 , 2 , - - - ,  n. 
(2) The main diagonal of A consists of the elements 1 , 2 , . . . ,  n. 
(3) If the element k occurs in the ith row (or column), k ~  i, then it occurs 

twice in that row (or column). 
(4) The element i occurs exactly once in the ith row and ith column (a,, = i). 

(5) Between them the ith row and ith column contain each of the elements 

1 , 2 , . . . ,  n exactly twice. (We count i twice; once in the row and once in the 

column.) 
(6) When A is superimposed on its transpose every ordered pair (i,j), 

i, j E {1, 2 , . . . ,  n }, occurs exactly once. 
An A-design of order 21 is shown in Fig. 3.1. 

As seen from the A-design of order 21 tlae existence of an A-design does not 
imply that DKn ~ AC~-~. However, the A-design of order n gives a "covering" 
of DK, in the sense that it defines a partition of the edges so that each set of 

edges in the partition forms anti-directed cycles which cover all but one vertex 

of DK,. 

The question now is, "Does there exist an A-design for every odd order n ?". 

Clearly an A-design exists when n = p" > 3, where p is an odd prime and e is a 
positive integer, and, as is easily seen, does not exist when n = 3. 

I 5 2 5 2 9 6 9 6 13 10 13 10 17 14 17 14 21 18 21 18 
4 2 1 1 4 21 19 20 18 9 7 8 6 21 19 20 18 9 7 8 6 
4 5 3 5 4 2 0 1 8 2 1 1 9  8 6 9 7 2 0 1 8 2 1 1 9  8 6 9 7 
3 3 2 4 2 1 8 2 0 1 9 2 1  6 8 7 9 1 8 2 0 1 9 2 1  6 8 7 9 
3 3 t 1 5 19 21 18 20 7 9 6 8 19 21 18 20 7 9 6 8 
8 1 7 1 5 1 6 1 4  6 1 1 8 5 3 4 2 5 3 4 2 1 7 1 5 1 6 1 4  
8 1 6 1 4 1 7 1 5  9 7 9 8 4 2 5 3 4 2 5 3 1 6 1 4 1 7 1 5  
7 14 16 15 17 7 6 8 6 2 4 3 5 2 4 3 5 14 16 15 17 
7 1 5 1 7 1 4 1 6  7 1 1 9 3 5 2 4 3 5 2 4 1 5 1 7 1 4 1 6  

12 17 15 16 14 21 19 20 18 10 1 1 12 21 19 20 18 17 15 16 14 
12 16 14 17 15 20 18 21 19-t3 11 13 12 20 18 21 19 16 14 17 15 
11 14 16 15 17 18 20 19 21 11 10 12 10 18 20 19 21 14 16 15 17 
11 15 17 14 16 19 21 18 20 11 1 1 13 19 21 18 20 15 17 14 16 
16 13 11 12 10 13 11 12 10 9 7 8 6 14 1 1 16 9 7 8 6 
16 12 10 13 11 12 10 13 11 8 6 9 7 17 15 17 16 8 6 9 7 
15 10 12 11 13 10 12 11 13 6 8 7 9 15 14 16 14 6 8 7 9 
15 11 13 10 12 11 13 10 12 7 9 6 8 15 1 1 17 7 9 6 8 
2 0 1 3 1 1 1 2 1 0 1 3 1 1 1 2 1 0  5 3 4 2 5 3 4 2 1 8  1 120 
20 12 10 13 11 12 10 13 11 4 2 5 3 4 2 5 3 21 19 21 20 
19 10 12 11 13 10 12 11 13 2 4 3 5 2 4 3 5 19 18 20 18 
19 11 13 10 12 11 13 10 12 3 5 2 4 3 5 2 4 19 1 1 21 

Fig. 3.1. 
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THEOREM 3.2. If there exists an A-design of order n, an A-design of order k 

and a pair of orthogonal latin squares of order k, then there exists an A-design of 

order nk. 

PROOF. Let A be an A-design of order n, let B be an A-design of order k 

and let C and D be a pair of orthogonal latin squares of order k. Begin with 

A = (ai~) and replace each element a, with a copy of B, adding k(a,  - 1) to each 

element in B. If i > j  replace each element a~j with a copy of C, adding k(a~i - 1) 

to each element in C;  and if i < j  replace each element a~j with a copy of D r, 

again adding k(a~j- 1) to each element in D r. 

It is not difficult to verify that the resulting array is an A-design of order nk. [] 

COROLLARY 3.3. If n is odd and n ~ 3 or 6 (modulo 9), then there exists an 

A-design of order n. 

PROOF. Since there exists an A-design of order p e > 3, where p is an odd 

prime and e is a positive integer, and since there exists a pair of orthogonal latin 

squares of every odd order greater than 3, then by Theorem 3.2 there exists an 

A-design of odd order n except perhaps when n - 3 or 6 (modulo 9). [] 

Although we have not been able to construct A-designs for every odd order n, 

n -  3 or 6 (modulo 9), we have constructed many infinite families of these 

orders. To do this we use a construction based on the singular direct product for 

quasigroups which was first introduced by Sade (see Lindner [12]). 

THEOREM 3.4. If there exists an A-design of order n, an A-design of order m 

with an A-subdesign of order k and a pair of orthogonal latin squares of order 

m - k ,  then there exists an A-design of order n ( m - k  ) + k. 

PROOF. Let A = (a,j) be an A-design of order n, let B be an A-design of 

order m with an A-subdesign C of order k, and let D and E be a pair of 

orthogonal latin squares of order m - k .  

Let F = (fit) be an array of order n + 1. Replace fl~ with a copy of C. Replace 

the four elements [ , ,[ , ,[ i t  and/~ with a copy of B so that its A-subdesign C is 

in the upper left corner and agrees with the copy of C already in the f ,  position. 

This copy of C is based on the elements 1 , 2 , . . . ,  k and we add (m - k)(a,  - 1) 

to each of the elements k + 1, k + 2,. �9  m in B. If i > j replace/,, with a copy of 

D, adding (m - k)(a~j - 1) + k to each element in D;  and if i < j  replace ~j with 

a copy of E T, again adding ( m -  k ) (a i j -  1)+ k to each element in E "r. 

It is not difficult to check that the resultant array is an A-design of order 

n(m - k ) + k .  [] 
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Using Theorem 3.4 many A-designs of order n, n -- 3 or 6 (modulo 9) can be 

constructed. For example, if n-=3(modulo 9) and n = 3 m k  where m -  

2 (modulo 5), then by Theorem 3.4 there exists an A-design of order 3m (as 

3m = 3(5r + 2)= 5((3r + 2 ) - 1 ) +  1) and hence by Theorem 3.2 there exists an 

A-design of order n = 3rak. The A-design of order 21 was obtained in this way. 

It is not difficult to find many other infinite families in similar ways. 

However, many orders remain unknown, the first being as small as order 15. 

What we hope for is a direct construction of A-designs of order 3p, where p is a 

prime, as this and Theorem 3.2 would suffice to show the existence of A-designs 
of every odd order n, n _-> 5. 

To our knowledge these designs (A-designs) have not arisen before although 

certain "generalizations" of orthogonality for latin squares have been consid- 

ered (see [5, pp. 461-466] and [7]). 
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